
Jini Distributed Events

Although these next three chapters may well be the toughest in the book, you should find them
worthwhile – we will be covering some core cornerstone concepts within Jini: remote events, distributed
leasing, and distributed transactions. A thorough understanding of these concepts will enable you to
draw from them effectively when developing Jini applications. There is a lot of code spread between the
chapters, but we've tried to keep it simple and tightly focused on each of the new concepts being
explored. The following is a summary of the coverage in the next three chapters.

Concept Coverage Description

Remote Events This Chapter Extends the Java event model across the network. Provides a
flexible asynchronous communications system. Jini
distributed events mechanism is built on top of RMI, making
it very simple to use. Designed to be 'chainable' or
'composable', allowing the possibility of using third-party
services to process or handle events in the form of a
pipeline.

Distributed Leasing Chapter 8 Associates resource allocation on a remote server with a
finite time lease that eventually expires. Distributed
leasing allows resources to be automatically reclaimed in
case of system or network failure. It forces the client to
show 'proof of interest' by renewing the lease on regular
interfaces. It contributes to the long-term health of a Jini
system by letting the network self-heal, purging itself of
resource leaks and zombie allocations, over a long period
of operating time. We will examine distributed leasing
from both the lease holder (resource user) and lease
grantor (resource allocator) point of view.

Table continued on following page

7

Chapter 7

234

Concept Coverage Description

Distributed
Transactions

Chapter 9 Provides a 'standard' means of synchronizing the
operation or state changes of multiple distributed
services. Jini provides the specification for a
TransactionManager that can co-ordinate a 'two phase
commit' protocol amongst multiple distributed
participants. The exact semantics of a transaction in
Jini is completely application dependent, the ACID
properties of classic transaction theory are not
enforced (although they can be for certain
applications). We will examine distributed
transactions from both the view of an external
transaction user, or an internal transaction participant.

In this chapter, our focus will be on distributed events – the main mechanism for asynchronous
communications in the Jini world. We will see how Jini extends the model of Java events, one that AWT
and Swing programmers will be familiar with, to one that works between remote Java VMs in a
distributed network. We will use several code examples to illustrate the concepts. We will see:

❑ How remote events are implemented

❑ The importance of selecting event IDs and sequence numbers for distributed events

❑ The ability – by design – to 'chain' multiple event receivers/senders together, and the
advantage of this 'composable' design

❑ How to use third-party event handling service

Remote Events in Jini
It's unlikely, though not impossible, that anyone who's been developing in Java for any length of time
has managed to bypass events. Certainly if you've been programming with either AWT, Swing or
JavaBeans you'll have come across various forms of listeners and events.

When using AWT events, the event producer (that sends the event) manages a set of objects registered
by the event consumer (that receives the event). Each of these objects, supplied by consumers, managed
by the producer, implements a 'listener' interface. They are often called listener objects. Once the
consumer has registered a listener with the event producer (usually via an addXXXListener() method
call of the source object), it can go about its own flow of logic. When the event producer is ready to fire
(send) an event, it will go through its list of listeners and call the notify() method (or equivalent) on
the listener interface. An XXXEvent object is passed as an argument to the notify() method, the
consumer can retrieve event specific information from this XXXEvent object. This procedure is
essentially a callback into the sink object. It is up to the sink object, the one that supplies the listener
object in the first place, to implement the logic within the notify()method.

Within AWT, Swing, and JavaBeans, all this happens locally within a single VM. Jini extends this across
the network, and across multiple VMs. All events thrown are subclasses of
net.jini.core.event.RemoteEvent, and all listener objects must implement the
net.jini.core.event.RemoteEventListener interface. This is an RMI based remote interface.

Jini Distributed Events

235

Event Concepts in Detail
What we're calling an event is, in real terms, a notification involving an event consumer and an
event producer:

❑ The event consumer registers an interest with the producer, usually associated with a state
change of the generator (for example, whenever a GUI button is clicked in AWT)

❑ The producer tracks registrations, and monitors for related state changes within its own realm
(for example, waiting for a mouse event corresponding to the click of the button)

❑ Should the appropriate change take place, the producer notifies the consumer (for example,
the button handling notifies the application code of the 'click')

So it looks something like this:

Event Consumer Event Producer

1. register interest in a specific state change

3. state change occurred, notify the registrant

2. monitor for the registered
state change

Notification, here, is asynchronous with respect to the normal flow of programming logic of the listener,
meaning notifications of state changes in the generator are sent as and when the state changes, not when
the interested application checks back for state changes, as is the case with polling. So how does the
producer go about notifying the consumer?

Asynchronous Notification
When we take a closer look at how the producer goes about notifying the consumer, we will see that it
actually calls the notify() method of the listener interface. This listener interface is implemented by
an object that is supplied by the consumer.

In most circumstances, the event generator's method invocation on the event consumer is a synchronous
call. Which means that the event generator will be typically blocked while the method is invoked, and
not continue with its own logic until the invocation returns. Event generators should protect themselves
from listeners with poorly written event handlers, typically accomplished by placing notification into a
separate thread to the main event generating program thread. This will ensure that misbehaving
consumers (that is, one that takes an exceedingly long time to process an event) cannot stop the main
logic of the producer from executing.

Chapter 7

236

Java Event Notification Mechanism
Most Java event notifications are implemented through the familiar listener code pattern.

The interaction is between a consumer and a producer of notifications. A listener is a Java object that
implements a listener interface. The consumer passes a listener object to the event producer as a form of
registration (indeed, sometimes the event consumer and the listener are the same Java object). The onus
is on the event producer to keep track of this registration.

A typical producer can take registrations from many consumers on many state changes of interest, and
must manage registration and un-registering appropriately.

When making event notifications, the producer provides an object to the consumer that implements the
event interface – this is nearly always a data object. The actual type (subclass) of the event object will
give the event handler information about the type of notification, while member variables of the object
will provide additional information. One member variable of the event object is the source of the event;
this is a reference to the producer itself.

This diagram illustrates the listener coding pattern.

object
implements

listener
interface

consumer
accesses

event source
information

via reference

producer calls back
through listener

event
object
with

reference
to producer

Event Consumer Event Producer

2. producer sends reference to itself within
an event during callback

1. consumer sends object/proxy to
producer during registration

Extending the Model Across the Network
When the event listener code pattern is extended across a network of multiple machines, something
interesting occurs. Although the logical concept remains the same, the unreliable nature of the
underlying delivery mechanism and infrastructure of a multiple machined network brings heavy-duty
complexity to the simple programming paradigm. Jini's remote event API abstracts most of this
complexity, and allows the programmer to respond to the new uncertainties.

Jini Distributed Events

237

First, let's look at the way remote events in Jini extend the single machine Java model. The consumer in
this case still creates a Java object that implements a listener interface. However, since the event
notification will be made remotely, there are really only two choices:

❑ Make the listener interface a remote interface via RMI

❑ Keep the listener interface local, but demand that the consumer supplies a proxy object
containing the interface (allowing the consumer to use means other than RMI to communicate
with the proxy)

For the provision of event notification, the first choice is by far the simplest, and it is also the chosen
path of Jini. Jini defines a specific remote (RMI) interface as the remote event listener:

public interface RemoteEventListener extends Remote,java.util.EventListener
{
 void notify(RemoteEvent theEvent) throws UnknownEventException,
 RemoteException;
}

So the programmer of the consumer application is responsible for generating RMI stubs for the listener
using the rmic tool, and providing a means of downloading the stubs, even though the consumer is
really a client on a higher conceptual level. This makes good sense; the client is temporarily an RMI
server when event notification is taking place through the remote listener interface.

The event generator supplies an event object as a parameter on the event notification that contains state
information: an event ID, a sequence number, a hand-back serialized object (MarshalledObject), and
a remote reference back to the producer that fired the event. The hand-back MarshalledObject is
one supplied by the consumer itself as part of the listener registration; this can be a reference to state
information within the consumer. The event object is an instance of a RemoteEvent subclass.
RemoteEvent is defined as:

public class RemoteEvent extends java.util.EventObject
{
 public RemoteEvent(Object source,long eventID, long seqNum,
 MarshalledObject handback)
 public Object getSource () {…}
 public long getID() {…}
 public long getSequenceNumber() {…}
 public MarshalledObject getRegistrationObject() {…}
}

This means that another RMI stub is required from the listener in order to communicate with the event
producer using the source reference contained in the event. However, as you'll usually use listener RMI
stubs to make the initial remote event registration possible (assuming that the service/producer chose
RMI as the transport mechanism for its service proxy), this simply means that additional class that
needs to be in the RMI download server (or JAR file).

The state information from the producer is usually carried in a RemoteEvent subclass that may have
additional fields and methods. The consumer uses the hand-back object to attach information to a
specific event registration; this MarshalledObject is handed back to the consumer during notification.

Chapter 7

238

An Example of Remote Events

We saw Jini events in action in an earlier example. Recall the DiscoveryListener interface that we
implemented in Chapter 6. The event handler provides the discovered() method call that the
LookupDiscovery helper class used to inform us when it had discovered lookup services.

public interface DiscoveryListener extends EventListener
{
 public void discovered(DiscoveryEvent e);
 public void discarded(DiscoveryEvent e);
}

Here, the discovered() method invocation is made asynchronously with respect to the normal
execution flow of our application. The main program blocks the end of its flow so that the process itself
can stay alive to handle the event notification whenever it happens (that is, when the discovery occurs).

The Problems Inherent to Remote Events
If you've worked with RMI, you'll have soon realized that any remote method might throw a
RemoteException at any time. Which is another way of saying that any message sent between
networked machines (and Java VMs of course) is liable to fail.

As either the machines in the network, or the network itself may fail at any time, and for any length of
time, event registration should be treated as a type of scarce resource. In other words, event
registrations should be leased to ensure the long-lived stability of the Jini system as a whole. This will
prevent the producer from keeping too many stale registrations around, or wasting time firing events to
consumers who may have either crashed or ceased their interest in the event without de-registering.

When remote event notifications are sent over a network, the following limitations are evident:

❑ Event delivery order cannot be generally assured, especially when there may be intermediary
event processors involved

❑ Success of event delivery itself cannot be generally assured

❑ Latency (or delay) in getting an event delivered can be substantial when compared to the
actual processing required for the event

These restrictions, combined with the possibility of occasional consumer or producer failure, make the
software designer's life significantly more difficult. One must take these constraints into account when
designing applications that work with remote events. For example, one could consider batching events
together should there be a likelihood of many events traveling between consumer/producer pairs. This
can substantially cut down on the average latency time and reduce overall network traffic. One may also
provide a reliable event delivery mechanism on top of the basic Jini event infrastructure. Building any
of this event processing functionality is beyond the scope of this chapter; however, we will have enough
information to attack such a project by the end of this chapter.

Jini Distributed Events

239

Selection of Event ID and Sequence Number
To assist in implementation of intermediary event processing services, Jini has provided the following:

❑ Event IDs

❑ Sequence numbers with each event

❑ Simple event interfaces that are completely composable

The event ID uniquely identifies the type of event, and/or the registration instance, from a producer.
Since a single consumer can be registered for many different types of events with a single producer, this
will enable the consumer to quickly determine what a specific notification is all about.

Here we see this use of the event ID:

Event Consumer Event Producer

send event instance
event ID = m

send event instance
event ID = n

send event instance
event ID = n

send event instance
event ID = m

state change A
occured

state change B
occured

state change B
occured

state change A
occured

Typically, within one single producer, the same event ID can (but may not necessarily) be used for the
same event type across multiple consumers, which allows one-to-one mapping of the event ID and type
of event. The following diagram illustrates this use of the event ID by the producer.

Chapter 7

240

Event Consumer #1

Event Consumer #2

send event instance
event ID = m

send event instance
event ID = n

state change A
occured

state change B
occured

Event Producer

send event instance
event ID = m

send event instance
event ID = n

As we will see in the next section when we talk about third-party events handling, we may need more
than one event ID per event type. Third-party events handlers are useful, for example, to provide an in-
order delivery of events even though the events may actually be delivered out of order (that is, the
third-party stores and sorts the events before delivering to the consumer). Such a middleman service
may register for event notification on behalf of multiple consumers. These registrations may be with the
same consumer for a particular type of event. In order for the middleman service to distinguish between
the different clients when the event is actually received, the middleman service will require the event ID
to represent a unique 'registration number' instead of the simple event type – which is not unique from
the view of the middleman service. In fact, reggie provides an event ID that is based on the registration,
and is thus compatible with the deployment of middleman services.

This figure illustrates the implementation for an event ID based on the registration number.

Event Consumer #1
Third-Party

Event Service Event Producer

Event Consumer #2

state change A
occured

state change B
occured

send event instance
event ID = m

(for consumer #1)

send event instance
event ID = o

(for consumer #2)

send event instance
event ID = n

(for consumer #1)

send event instance
event ID = p

(for consumer #2)

Jini Distributed Events

241

Sequence numbers specify the order in which events were generated by the event generator. It is not
guaranteed that the events will arrive at the listener in the order they were generated.

The Jini specification requires that the sequence numbers of events, associated with a specific event ID
and from a specific event producer, increase, but it doesn't specify what that increment should be. For
example, if you receive two events with the same event ID from the same producer and one contains
the sequence number 5 while the other one contains the sequence number 18, you can safely conclude
that the event with the sequence number 18 was sent later by the event generator, even if you do
receive it before you receive the event with sequence number 5. You can also specify, although the Jini
specifications do not require it, a full ordered sequence of numbers. In this case the generator should
increment the sequence number by 1 whenever events with the same event ID are fired. Other than
providing a means of determining order, this can also keep count of the number of events that may be
missing for the consumer (if we know in advance that the increment is 1).

This is vital for applications that cannot tolerate missing events. Our earlier example would have
indicated, for example, that there were 18-5 = 13 events that had been generated for the same event ID
between the two events that we have on hand.

Third-Party Event Handling
There are plenty of legitimate design scenarios where one might want to make use of third-party events
handling, where someone else handles event registrations and/or event handling on your behalf. The
following diagram illustrates this:

Event Consumer #1
Third-Party

Event Service Event Producer

Event Consumer #2

send event
"downstream"

destined
for consumer #1

send event
"downstream"

destined
for consumer #2

performs value added
(custom processing,
store-and-forward,

buffering,
concentrating,

filtering,etc), then
maps and forwards
to corresponding

consumer

The clients and services that use third-party event handling generally fall into one or more of the
following three categories. The event consumers or event producers:

❑ Do not want to handle events themselves

❑ Cannot handle the events themselves

❑ Want the added value that the third-party brings

Chapter 7

242

The service may not want to handle the service because of the complex logic such handling requires, or
because it may be positioned badly within the network for event handling – on a slow part of a network,
or behind a firewall, for example.

There are actually quite a few examples of services that could not manage events, even if they wanted
to: that is a Jini service that runs only on demand (that is, activatable services), services that run on
limited Java platforms without RMI support, or even services that run on devices that don't have a Java
VM at all. In these cases, a third-party that represents the service and handles events for it allows it to
participate fully in a Jini network.

Services might elect to use a third-party for value added reasons: services like event ordering services,
for example, event concentrating services, reliable event delivery services, event consolidation services,
and so on.

Since version 1.1, the Jini distribution has included a third-party event mailbox service, code-named
Mercury. Mercury receives events on behalf of event consumers, buffers or stores them, and allows
consumers to retrieve these events at their convenience. We'll examine Mercury's functionality and put
it to action in Chapter 11.

Event Routing Through Pipelines
Hooking up third-party event delegates allows you to create a pipeline value-adding model. In effect, a series
of specialized third-party handlers can be chained together in both the routing and processing of events.

A value adding, third-party handler can add generic functionality to event handling (store-and-forward
functionality, for example, with an event mailbox like Mercury), or it can process associated event data
across the pipeline (active processing of the attached data with the event).

This is useful if you're in the business of re-using software as well, allowing composability of sorts. You
can compose functional blocks dynamically at deployment time to create newly combined functionality.
Unix veterans will recognize this as a primary advantage provided by the operating system through the
pipe '|' operator and utilities like 'tee'.

It is the simplicity of Jini's remote event mechanism that makes composability possible. Rather than
using a specific listener interface and event type for each and every event type, as Swing and AWT do,
Jini has one remote listener interface to fit all consumers and likewise one single remote event
definition. This means that all event sources and event sinks are directly plug compatible – they can be
plugged into one another without worrying about incompatibility.

The following diagram illustrates the plug compatible action of Jini remote event sources and sinks.

Jini Distributed Events

243

Event Consumers

Third Party
Event Services

Event Producers

Any third-party event service has to use the event ID to distinguish the information contained in the
'consumer, event type, generator' trio. The service must map the event ID to the trio, and all other
services in the pipeline must understand the specific conventions that have been used in order for them
to work together.

Implementing an Event Consumer
So let's implement a remote event consumer. You can find the code for this consumer in the
ch7\code\EvtClient directory of the source code distribution. We'll be using the same client
framework for our later explorations, but for now, this client will be interacting with a lookup service for
registration and receipt of remote events. The lookup service will be the reference implementation.
Reggie will generate remote events to the client based on the internal state changes in the proxies store.
The following illustration shows how EvtClient works.

EvtClient reggie
HitmanService
Name="one"

2. discovers and joins the
iguanas group

1. register interest for 'joining' and'leaving'
of services with attribute Name="one"

3. notify that a service with attribute
Name="one" has joined

5. notify that a service with attribute
Name="one" has left the group

4. leaves the iguanas
group, cancels registration

Chapter 7

244

The EvtClient:

❑ Discovers an instance of a lookup service in the group iguanas

❑ Registers with the lookup service in order to be notified when a specific service (with attribute
Name="one") joins and leaves the federation

❑ Catches the join and leave remote notifications from the lookup service, and prints the event
ID and sequence number information to the standard output

The Event Producer Role of a Lookup Service
A Jini lookup service supports remote event registration directly through the registrar proxy. A client of
the service can specify an interest in specific state changes within its service/proxy data store. The
registration is performed via the ServiceRegistrar interface that we're already familiar with. There
is one specific method in the ServiceRegistrar interface that is responsible for event registration:

public interface ServiceRegistrar
{
 ServiceRegistration register(ServiceItem item, long leaseDuration)throws
 RemoteException;
 Object lookup(ServiceTemplate tmpl) throws RemoteException;
 ServiceMatches lookup(ServiceTemplate tmpl, int maxMatches) throws
 RemoteException;

 EventRegistration notify(ServiceTemplate tmpl, int transitions,
 RemoteEventListener listener,MarshalledObject handback, long
 leaseDuration) throws RemoteException;
...
}

A template can specify the services state changes that can be monitored by the lookup service. The
template may contain interface/class types, service IDs, and attributes as in service lookup. The state
changes, specified in terms of transitions with respect to the template, are:

int TRANSITION_MATCH_NOMATCH = 1 << 0;
int TRANSITION_NOMATCH_MATCH = 1 << 1;
int TRANSITION_MATCH_MATCH = 1 << 2;

In other words, every time a change occurs in the proxy registration database, the lookup service will
attempt to match the supplied template. It remembers the result of the previous match and will send
notification only if the desired transition between match and no match is detected (for
TRANSITION_MATCH_NOMATCH), or between no match and match (for
TRANSITION_NOMATCH_MATCH), or if some attribute of a service is changed (for
TRANSITION_MATCH_MATCH).

This method returns an EventRegistration instance. EventRegistration is a class specified as:

public class EventRegistration implements java.io.Serializable
{
 public EventRegistration(long eventID,
 Object eventSource,
 Lease eventLease,

Jini Distributed Events

245

 long seqNum) {…}
 public long getID() {…}
 public Object getSource() {…}
 public Lease getLease() {…}
 public long getSequenceNumber() {…}
}

Event Consumer Jini Client Coding
Here is the code for the EvtClient.java implementation:

import net.jini.discovery.*;
import net.jini.core.lookup.*;
import java.io.IOException;
import java.rmi.RemoteException;
import java.rmi.RMISecurityManager;

First, we need to import support for RMI calls, leasing, attribute entry, and template matching.

import java.rmi.server.UnicastRemoteObject;
import java.rmi.MarshalledObject;
import net.jini.core.event.*;
import net.jini.core.lease.*;
import net.jini.lease.LeaseRenewalManager;

import net.jini.lookup.entry.Name;
import net.jini.core.entry.Entry;

Note that EvtClient class itself extends java.rmi.server.UnicastRemoteObject. This means
that any references passed out of EvtClient will be automatically 'made' remote by the RMI runtime.
We do not have to export the references explicitly.

The implementation of DiscoveryListener is created for handling non-remote notifications
whenever an instance of a lookup service is discovered within the Jini federation. On the other hand,
the implementation of RemoteEventListener is for remote notification from the lookup service
whenever an instance of a specific service of interest registers with, or leaves, the lookup
service/federation, or when its registration with the lookup service changes.

public class EvtClient extends UnicastRemoteObject implements
 DiscoveryListener, RemoteEventListener
{
 protected ServiceRegistrar[] registrars;
 static final int MAX_MATCHES = 5;

The main() method creates an instance of EvtClient and sits dormant while the client waits for
remote notifications from the lookup service. Optionally, if a command line argument exists, it passes it
into the constructor of EvtClient. This command line argument can be use to specify the groups that
this EvtClient instance should attempt to join (that is, discover lookup services for).

 static public void main(String argv[])
 {
 EvtClient myApp = null;

Chapter 7

246

 try
 {
 if (argv.length > 0)
 myApp = new EvtClient(argv);
 else
 myApp = new EvtClient(null);
 synchronized (myApp)
 {
 myApp.wait(0);
 }
 }
 catch(Exception e)
 {
 System.exit(0);
 }
 }

The doLookupWork()method, like the variations that we have seen in the previous chapter, examines
the service item of the registrar (proxy of reggie) and prints out some interesting information such as its
service ID and the group that it services.

private void doLookupWork()
 {
 ServiceMatches matches = null;
 String [] groups;
 String msg = null;
 if(registrars.length > 0)
 {
 msg = "";
 System.out.println("--");
 System.out.println("Registrar: " + registrars[0].getServiceID());
 try
 {
 groups = registrars[0].getGroups();
 if (groups.length > 0)

 for (int o=0; o<groups.length; o++)
 {
 msg += groups[o] + " ";
 }
 System.out.println("Groups Supported: " + msg);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }
 }
 }

The constructor creates an RMISecurityManager as the client will be downloading proxies from the
lookup service. It also starts a LookupDiscovery instance to handle discovery of lookup services
within the specified groups from the input argument (or null which is the same as
LookupDiscovery.ALL_GROUPS).

Jini Distributed Events

247

 public EvtClient() throws RemoteException
 {
 ClientCore(null);
 }

 public EvtClient(String [] ingroups) throws RemoteException
 {
 ClientCore(ingroups);
 }

 private void ClientCore(String [] ingroups) throws RemoteException
 {
 if (System.getSecurityManager() == null)
 {
 System.setSecurityManager(new RMISecurityManager());
 }
 LookupDiscovery discover = null;

 try
 {
 discover = new LookupDiscovery(LookupDiscovery.NO_GROUPS);
 discover.addDiscoveryListener(this);
 discover.setGroups(ingroups);
 }
 catch(IOException e)
 {
 System.err.println(e.toString());
 e.printStackTrace();
 System.exit(1);
 }
 }

The discovered() method is an event notification method on the DiscoveryListener interface. It
is called when the discovery protocol has produced a set of lookup service proxies. Here we save the
reference to the proxies and simply call the doLookupWork() and the doEventReg()methods.

 public synchronized void discovered(DiscoveryEvent evt) {
 registrars = evt.getRegistrars();
 doLookupWork();
 doEventReg();
 }

 public void discarded(DiscoveryEvent evt) {

 }

The doEventReg() creates a template to specify matches based on attribute Name="one". We submit
the template to the notify() method of the reggie proxy, and request for notification on both
TRANSITION_NOMATCH_MATCH and TRANSITION_MATCH_NOMATCH transitions by logically ORing them.
The consumer in this case is also the listener, therefore we pass the this reference for the
RemoteEventListener argument. RMI runtime will automatically export our server and supply our
stub object (EvtClient_Stub) to the client via the codebase. For the handback object, we have used a
marshalled version of the reggie proxy itself. It is done here just to show how to create a
MarshalledObject, and is not actually used. We request a permanent lease on the registration, which
we know reggie will likely not grant. Whatever duration reggie decides to grant, we will pass the lease
returned within the EventRegistration instance to a LeaseRenewalManager that will handle the
'forever' renewal of lease for us automatically.

Chapter 7

248

public EventRegistration myReg = null;

 protected void doEventReg()
 {
 if (registrars.length > 0)
 {
 Entry myAttrib[] = new Entry[1];
 myAttrib[0] = new Name("one");

 try
 {
 myReg = registrars[0].notify(new
 ServiceTemplate(null,null,myAttrib) /* tmpl */,
 ServiceRegistrar.TRANSITION_NOMATCH_MATCH |
 ServiceRegistrar.TRANSITION_MATCH_NOMATCH,
 this,
 new MarshalledObject(registrars[0]) /* handback */,
 Lease.FOREVER);
 }
 catch (RemoteException ex)
 {
 ex.printStackTrace();
 System.exit(1);
 }
 catch (IOException ex)
 {
 ex.printStackTrace();
 System.exit(1);
 }

 new LeaseRenewalManager(myReg.getLease(), Lease.FOREVER, null);
 }
 }

Finally, the notify() method implements the only method on the RemoteEventListener interface.
This is essentially the event notification method. Here, we simply dissect and print some interesting
information on the RemoteEvent that is supplied. Since we know that the event is actually a subclass of
RemoteEvent called ServiceEvent, we can obtain the additional information provided by this event.

 public synchronized void notify (RemoteEvent inEvt) throws
 UnknownEventException, RemoteException
 {
 ServiceEvent srvEvt = (ServiceEvent) inEvt;
 System.out.println("got a notification from:");
 ServiceRegistrar mySrc = (ServiceRegistrar) srvEvt.getSource();
 System.out.println(" Source service ID: " + mySrc.getServiceID());
 System.out.println(" Event ID: " + srvEvt.getID());
 System.out.println(" Sequence Number: " +
 srvEvt.getSequenceNumber());
 System.out.println(" Due to Proxy: " + srvEvt.getServiceID());

 if (srvEvt.getServiceItem() == null)
 System.out.println(" Proxy Deleted");
 else
 System.out.println(" Attributes: " +
 srvEvt.getServiceItem().attributeSets[0]);
 System.out.println(" Transition: " + srvEvt.getTransition());
 }
}

Jini Distributed Events

249

Run the batch file to compile the code:

..\bats\buildit EvtClient.java

Next, we need to create the RMI stubs.

Creating RMI Stubs
As we saw earlier, the RemoteEventListener interface is an RMI interface. We create RMI stubs
using the rmic utility provided by the JDK. A batch file called makejar.bat is supplied for this
purpose; you will find it in the ch7\code\EvtClient directory. The batch file contains:

call ..\bats\setpaths.bat
rmic -classpath %JINIJARS%;. -v1.2 EvtClient
jar cvf EvtClient-dl.jar EvtClient_Stub.class
copy EvtClient-dl.jar %WROXHOME%

rmic is used to create the RMI stubs required by EvtClient. A JAR file is then created with the stub
and copied to the root of the stubs class server.

Case-Sensitivity Caveat
Be very careful of case-sensitivity if you're creating JAR files on a Win32 system.
Spelling EvtClient_Stub.class as EvtClient_stub.class will still work on a
Win32 command line, but create a horrible mess when you get around to debugging: it
will lead to service event notifications that cannot locate the classes it needs.

Testing the Event Client
To test the event client, we will need to:

❑ Change directory to the ch7\code\bats directory where the startup batch files are located

❑ Delete the log directories for reggie and rmid to clear up previously stored states from other
experiments; you can use the runclean.bat file under Windows 95/98 (or manually remove the
directories in Win2000 or NT)

❑ Start the HTTP class server by starting runhttpd.bat

❑ Start the stubs serving class server by starting runhttpdstubs.bat

❑ Start the RMI Activation daemon, RMID, by starting runrmid.bat

❑ Start one copy of reggie on the iguanas group by starting the runlookup1.bat file

❑ Wait for the setup VM to complete, now reggie is running properly

❑ Change directory to Ch7\code\EvtClient directory

❑ Start our event client by executing the runevt.bat file in this directory, it contains:

call ..\bats\setpaths.bat
java -classpath .;%JINIJARS% -Dnet.jini.discovery.interface=%ADAPTERIP% -
Djava.security.policy=policy.all -
Djava.rmi.server.codebase=http://%STUBHOST%/EvtClient-dl.jar EvtClient %1 %2

Chapter 7

250

At this point, you should see our client discover the lookup service, and an indication of the registration
with the service for event notifications. The output from the client should be similar to this:

Since there aren't any services joining or leaving the federation, there is no transition from the
match/no-match states within the lookup service, so we ought to start such a service.

Go to the Ch9\code\hitman directory, we will borrow a service for this purpose. Don't worry about
what it does for now, because we will be taking a detailed look at this service in the transaction coverage
of this chapter. For now, you only need to know that the proxy registered by this service will have the
attribute Name="one" that is necessary to trigger the desired transition. This will cause reggie to send
an event to our waiting client. Compile the Hitman service by using:

..\bats\buildit HitmanService.java

Create the stubs by using:

makejar

Create a directory for the log files:

md hitlogs

Finally, start the HitmanService by running the runhit1.bat file.

The following image shows what the HitmanService should look like after it has started. It actually
has a GUI. In fact, if you do click on the button, it will do an orderly un-registration with the lookup
service by canceling the lease on the proxy registration – but don't click it yet:

Shortly after starting the service, you should see the remote event being caught and decoded by our
EvtClient. This shows something close to what you should see:

Jini Distributed Events

251

What's happened is that the search template that specifies the attribute Name="one" has switched from
a no_match to match state when the HitmanService proxy is registered. This is exactly what the client
registered for.

To observe the event sent when transitioning from match to no_match (numeric value is 2) click the
button on the HitmanService GUI to perform an orderly de-registration of the service's proxy.

You should see the EvtClient printing out the details of the new event received. Here we see this new
decoded output.

You may want to repeat this and observe the event ID and sequence number being assigned by reggie
in this scenario.

Implementing an Event Producer
Now to turn the tables and see how the services implement a remote event producer. As you might
expect, this is a bit more complicated than implementing a consumer.

Specifically, the event generator needs to:

❑ Provide event registration (Jini does not specify how this should be implemented) and keep
track of the registrations

❑ Monitor and scan for the state changes

❑ Co-ordinate event firing to all the interested consumers

❑ Assign eventIDs and sequence numbers to satisfy the application's needs

We'll provide an event registration mechanism for the event generator through a new interface called
IndexKeeperRemote. This interface inherits from IndexKeeper, but adds a remote event registration
method to it:

import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.EventRegistration;

public interface IndexKeeperRemote extends IndexKeeper,java.rmi.Remote
 {

Chapter 7

252

 public EventRegistration addRemoteListener(RemoteEventListener listener)
 throws java.rmi.RemoteException;

 }

Note that the interface is also made remote, unlike the original IndexKeeper implementation. This means
that the proxy object that is stored within the lookup service will be an RMI stub to an implementation of
IndexKeeperRemote – and not a custom IndexKeeper object as we have seen previously.

The state-change we're looking for is simply a specified elapse of time. We'll use a thread that goes to
sleep, waking at intermittent intervals to fire events to interested clients. It co-ordinates the firing of
events by sequentially scanning the list of registered listeners, and creates a thread that will fire the
event. This means that the event producing application will not be blocked by a notification call taking
a long time to process (out of order event delivery will also be a distinct possibility).

The event ID is assigned according to the position of the registration in the list of listener registrations.
This will be the same for all events from the same registration. The sequence number is implemented
globally across all event types, and will increment irregularly should there be more than one type of
event registration. In other words, the sequence numbers aren't ordered.

The code for the service can be found in the ch7\code\EvtService directory. Here is the
EvtService.java source code:

import java.rmi.Remote;
import java.rmi.server.RemoteObject;

We need to import RMI support, lookup entry for attribute management, discovery protocol support
and the JoinManager.

import java.rmi.server.UnicastRemoteObject;
import java.rmi.MarshalledObject;
import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import net.jini.core.event.EventRegistration;
import java.rmi.RemoteException;
import net.jini.core.event.UnknownEventException ;

import javax.swing.event.EventListenerList;

import net.jini.lookup.ServiceIDListener;
import net.jini.lookup.entry.Name;
import net.jini.core.entry.Entry;
import java.rmi.RemoteException;
import java.rmi.RMISecurityManager;
import net.jini.lookup.JoinManager;
import net.jini.discovery.*;
import net.jini.core.lookup.ServiceID;

The IdPrinter defined implements the ServiceIDListener interface. This is the event notification
interface (non-remote) for the service ID assigned by the lookup service. JoinManager will make an
event notification on the serviceIDNotify()method upon a service ID assignment. We print it to
standard output as we did before.

Jini Distributed Events

253

class IdPrinter implements ServiceIDListener
 {
 int myIndex;
 public IdPrinter(int initIndex)
 {
 myIndex = initIndex;
 }

 // A real service will save the serviceID in persistent store
 public void serviceIDNotify(ServiceID serviceID)
 {
 System.out.println("instance " + myIndex + " has been assigned
 service ID: " + serviceID.toString());
 }
 }

Our EvtService class, which implements the remotely callable IndexKeeperRemote interface,
inherits from java.rmi.server.UnicastRemoteObject to make RMI reference handling simple.

public class EvtService extends UnicastRemoteObject implements
 IndexKeeperRemote
 {
 static final int MAX_INSTANCES = 3;
 static final String [] GROUPS1 = { "iguanas"};

myIndex, as you might recall from the last chapter, is an instance number given to a specific instance of
the service proxy. Since our proxy is actually an RMI stub in this case, the index is assigned to the server-
side instance. We maintain a worker thread that will wake up periodically to perform event firing.

The variable evtSeqNum holds the global event sequence number, and is initialized to 1. It increments
across all events. The worker thread will be incrementing this sequence number by 1 each time it fires
an event – regardless of event ID or event type. meExported is a temporary holder for the exported
instance of the evtService itself, and it will be used later by the worker thread to send a remote
reference of the source object (within the RemoteEvent object) to a listener.

 int myIndex = 0;
 Thread worker = null;
 RemoteObject meExported = null;
 long evtSeqNum = 1L;
 protected JoinManager myJM = null;

The main() method creates an instance of EvtService, passing it an integer index that may be
supplied as a command line argument. It then sits idle while JoinManager and the worker event firing
thread goes to work.

public static void main(String argv[])
 {
 EvtService myApp = null;
 try
 {
 if (argv.length > 0)
 myApp = new EvtService(Integer.parseInt(argv[0]));
 else

Chapter 7

254

 myApp = new EvtService(300);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 synchronized(myApp)
 {
 try
 {
 myApp.wait(0);
 }
 catch(InterruptedException e)
 {
 System.exit(0);
 }
 }
 } // of main()

The EvtService itself creates an RMI security manager for the RemoteEventListener callback.

 LookupDiscoveryManager ldm = null;
 JoinManager jm = null;

 public EvtService() throws RemoteException
 {
 StartService(-1);
 }

 public EvtService(int inIndex) throws RemoteException
 {
 StartService(inIndex);
 }
 private void StartService(int inIndex) throws RemoteException
 {
 myIndex = inIndex;
 meExported = this;
 if (System.getSecurityManager() == null)
 {
 System.setSecurityManager(new RMISecurityManager());
 }

It creates the attribute Name="one" so that the client will be able to find the service proxy. It also
creates the worker thread to fire events occasionally. We will see the sleeper class that implements this
thread later. Note that the thread is created in the suspended state at this time. It then creates a
LookupDiscoveryManager instance to handle discovery protocol for the iguanas group. This
LookupDiscoveryManager instance, along with the attributes, the RMI proxy, and an instance of the
IdPrinter class, are supplied as parameters to start the JoinManager operation. The JoinManager
will perform the Join protocol and assure that our service will be available within the iguanas group as
long as it is kept alive.

Jini Distributed Events

255

 String [] groupsToDiscover = GROUPS1;
 Entry [] attributes = new Entry[1];
 attributes[0] = new Name("one");
 worker = new Thread(new Sleeper(this));
 try
 {
 ldm = new LookupDiscoveryManager(groupsToDiscover,
 null /* unicast locators */,
 null /* DiscoveryListener */);
 jm = new JoinManager(this, /* service */
 attributes,
 new IdPrinter(myIndex) /* ServiceIDListener*/,
 ldm /* DiscoveryManagement */,
 null /* LeaseManager */);

 }
 catch(Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 } // catch
 worker.start();

 } //EvtService
 attributes[0] = new Name("one");
 worker = new Thread(new Sleeper(this));
 try
 {
 ldm = new LookupDiscoveryManager(groupsToDiscover,
 null /* unicast locators */,
 null /* DiscoveryListener */);
 jm = new JoinManager(this, /* service */
 attributes,
 new IdPrinter(myIndex) /* ServiceIDListener*/,
 ldm /* DiscoveryManagement */,
 null /* LeaseManager */);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 } // catch
 worker.start();

 } //EvtService

The getIndex() method did not change implementation. However, it now retrieves the index for this
service instance. This means that every getIndex() call will result in an RMI call from the client to
the service.

 public int getIndex() throws RemoteException
 {
 return myIndex;
 }

Chapter 7

256

Tracking Event Registrations
For convenience, we'll use the general and lightweight javax.swing.event.EventListenerList to
implement the list of listeners. Although this class can manage heterogeneous lists consisting of listeners
of different types, we won't be using this feature of the list in this example.

 protected EventListenerList myList = new EventListenerList();

Here is the event registration handling routine we specified in the new IndexKeeperRemote interface.
As the Jini specifications don't make recommendations on the correct implementation of registration,
we're going to borrow the JavaBeans conventions.

public synchronized EventRegistration addRemoteListener(RemoteEventListener
 listener) throws RemoteException
{
 System.out.println("got a registration!");
 myList.add(RemoteEventListener.class, listener);

After we have added the listener to the list, we'll find out which position it is actually stored in and note
this for the event ID – taking advantage of this specific list implementation and knowing that the
position will not change unless the listener element is removed (for this simple example, we will ignore
the need to remove listeners).

 //find out where it is added to determine event ID
 long tpEventID = 0;
 Object[] listenerList = myList.getListenerList();
 for (int i = listenerList.length - 2; i >= 0; i -= 2)
 {
 if (listenerList[i+1].equals(listener))
 {
 tpEventID = i+1;
 break;
 }
 }
 return new EventRegistration(tpEventID, this, null, evtSeqNum);
}

Once we have the event ID, we can return the source producer, event ID, current sequence number,
and a lease back to the client within an EventRegistration instance. We're not creating a lease at
this point, but we will later on.

Firing Events
The next method, fireRemoteEvent() iterates through the listener list and fires an event for each
listener within the list. It will be executed by the worker thread.

public void fireRemoteEvent()
 {
 RemoteEvent anEvent = null;
 System.out.println("Checking for listeners...");
 Object[] listeners = myList.getListenerList();

 for (int i = listeners.length - 2; i >= 0; i -= 2)
 {

Jini Distributed Events

257

 if (listeners[i] == RemoteEventListener.class)
 { // redundant check in our case
 RemoteEventListener aList = (RemoteEventListener) listeners[i+1];
 try
 {
 if (anEvent == null)
 {
 anEvent = new RemoteEvent(meExported, i+1,
 evtSeqNum++, null);
 }

Note that the worker thread itself makes use of short-lived threads to fire the events. This will make sure
that the worker thread will not be blocked by a notify() call on a listener that does not return for a
long time. Remember that notify() calls are synchronous RMI calls.

 System.out.println("Fired one event...");
 // use short temporary threads to avoid blocking
 new Thread(new Notifier(aList, anEvent)).start();
 }
 catch(Exception ex)
 {
 ex.printStackTrace();
 }
 }// of if listener==RemoteEventLister.class
 } // of for i
 } // of fireRemoteEvent
}

The sleeper class actually implements the logic of the worker thread. It will sleep for 30 seconds, wake
up and fire remote events until the service terminates.

class Sleeper implements Runnable
 {
 EvtService myService;

 public Sleeper(EvtService inServ)
 {
 myService = inServ;
 }
 public void run()
 {
 int loopCounter = 1;
 while(true)
 {
 System.out.println("in loop... " + loopCounter++);
 System.out.flush();
 try
 {
 Thread.sleep(30000L);
 }
 catch (Exception e) {}
 myService.fireRemoteEvent();
 }
 }
 }

Chapter 7

258

The class Notifier implements the actual notification for any specific listener. It is a worker thread
that is created by the main worker thread. The lifetime of this thread is exactly one single event
notification. This is not good production code for most VMs – a more complex thread-pool based
implementation would be significantly more efficient. However, we've kept things simple here to help
emphasize the event handling and firing logic.

class Notifier implements Runnable
 {
 RemoteEventListener myListener;
 RemoteEvent myEvent;
 public Notifier(RemoteEventListener inLis, RemoteEvent inEvt)
 {
 myListener = inLis;
 myEvent = inEvt;
 }
 public void run()
 {
 try
 {
 myListener.notify(myEvent);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
 }

That is all the code to the service. From the ch7\code\EvtService directory, compile the code using:

..\bats\buildit EvtService.java

Making RMI Stubs
We need to create RMI stubs for the IndexKeeperRemote remote interface that we are implementing.
These stubs will also be the proxy objects that will be shipped to the lookup service. We can make the RMI
stub using the batch file in the ch7\code\EvtService directory: makejar.bat. it contains:

call ..\bats\setpaths.bat
rmic -classpath %JINIJARS%;. -v1.2 EvtService
jar cvf EvtService-dl.jar EvtService_Stub.class IndexKeeperRemote.class
IndexKeeper.class
copy EvtService-dl.jar %WROXHOME%

The batch file above will create the JAR file containing the stub and related class. It will also copy the
resulting JAR file into the root directory of the HTTP class server for stubs as well.

We are now ready to test the event producer service. However, we do not yet have a client that
understands the IndexKeeperRemote interface used for this service.

Modifying the EvtClient to use EvtService
Since the EvtClient application was first coded to use reggie for event registration, we can quickly
adapt it for use with our EvtService.

Jini Distributed Events

259

You will find the source code in the ch7\code\EvtClient2 directory of the distribution. We have
actually inherited from EvtClient and then made it compatible with EvtService. Because of this,
you must copy over EvtClient.class from the ch7\code\EvtClient directory before compiling
the source.

In addition, we will also need to copy over the IndexKeeperRemote.java interface file and the
IndexKeeper.java file that it is based on.

The doEventReg() method now uses the class type IndexKeeperRemote to find the proxy instead of
attributeName="one". It also calls the addRemoteListener() method to add itself as a listener,
instead of the notify() method of the ServiceRegistrar as before.

protected void doEventReg()
 {
 if (registrars.length > 0)
 {
 Class [] myClassType = { IndexKeeperRemote.class };

 try
 {
 IndexKeeperRemote myES = (IndexKeeperRemote) registrars[0].lookup(new
 ServiceTemplate(null,myClassType,null));
 if (myES != null)
 {
 myES.addRemoteListener(this);
 System.out.println("registered our interest in the event...");
 }
 else
 System.out.println("cannot find any proxy for event service...");
 }
 catch (RemoteException ex)
 {
 ex.printStackTrace();
 System.exit(1);
 }
 catch (IOException ex)
 {
 ex.printStackTrace();
 System.exit(1);
 }
 }
 }

The other minor modification required is to change the reference from the ServiceRegistrar to the
IndexKeeperRemote interface within the notify()event notification method.

public synchronized void notify (RemoteEvent inEvt) throws
 UnknownEventException, RemoteException
 {
 RemoteEvent srvEvt = inEvt;
 System.out.println("got a notification from:");
 IndexKeeperRemote mySrc = (IndexKeeperRemote) srvEvt.getSource();
 System.out.println(" Source instance: " + mySrc.getIndex());
 System.out.println(" Event ID: " + srvEvt.getID());
 System.out.println(" Sequence Number: " + srvEvt.getSequenceNumber());
 }

Those are all the changes necessary. Follow the steps listed earlier to compile, make stub, and make the
necessary JAR file for this new EvtClient.

Chapter 7

260

Testing Our Own Remote Event Producer and Consumer
To test out the new EvtClient2 and the EvtService, we perform the following steps.

❑ Change directory to the location of the startup files

❑ Clean up the log files by running runclean.bat or remove the log directories manually.

❑ Start the class server by running the batch file runhttpd.bat

❑ Start the stub class server by running the batch file runhttpdstubs.bat

❑ Start the rmid activation daemon by running the batch file runrmid.bat; this should also start
the reggie instance from before

❑ Change directory to the location of the EvtService by running the runevt.bat file. This file
contains:

call ..\bats\setpaths.bat
java -classpath .;%JINIJARS% -Dnet.jini.discovery.interface=%ADAPTERIP% -
Djava.security.policy=policy.all -
Djava.rmi.server.codebase=http://%STUBHOST%/EvtService-dl.jar EvtService %1 %2 %3

At this point, you should see the service coming up and a service ID being assigned by reggie

❑ Open another command shell with the JDK/Jini environment set, and change directory to
Ch7\code\EvtClient2

❑ Start an instance of the client using the runevt.bat file in this directory. You should see the
client starting up, locate the lookup service, and then make a registration with the service

On the service side, you'll see a message indicating the worker thread has checked the listener list, and
you should see the event registration on the service output.

Jini Distributed Events

261

If you wait until the next worker thread sweep, you should see the worker thread announce that it has
fired an event.

You can also see in the client output that the remote event notification has been received and decoded.
The remote instance number printed (300) was obtained by a call to the getIndex() method which
executes on the service side.

So we've successfully created a remote event consumer that works well with lookup services like reggie,
by creating an event producer service and modifying the original consumer to work with our service.

Chapter 7

262

Summary
In this chapter, we have thoroughly explored remote events in the Jini context. First, we reviewed and
re-examined the Java event model, and saw how remote events extend the same listener code pattern
from intra-Java VM to across the network. The unreliable transport across a network has made event
implementation across a network more difficult to implement than the local version.

We saw the single interface RemoteEventListener, and single class RemoteEvent that Jini's remote
events are based on. We talked about the ability to compose multiple Jini services together to form an
event processing pipeline. The concept of third-party event services was introduced, and the importance
of selecting the right algorithm for generating event ID and sequence numbers was discussed.

Through hands-on coding, we worked with the Jini lookup service (reggie) by registering to receive
remote events whenever a registered service changes states. Finally, we created our own event
notification service that will accept event registrations from clients. We have also modified the original
event client to work with our own event notification service.

In the next section, we will cover the one issue that we have purposely avoided in our implementation –
distributed leases in Jini.

Chapter 7

264

